A sandwich in thin lie algebras

نویسندگان

چکیده

Abstract A thin Lie algebra is a $L$ , graded over the positive integers, with its first homogeneous component $L_1$ of dimension two and generating such that each non-zero ideal lies between consecutive terms lower central series. All components have one or two, two-dimensional are called diamonds. Suppose second diamond (that is, next past ) occurs in degree $k$ . We prove if $k>5$ then $[Lyy]=0$ for some element $y$ In characteristic different from this means sandwich discuss relevance fact connection an important theorem Premet on elements modular algebras.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie $^*$-double derivations on Lie $C^*$-algebras

A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...

متن کامل

Diamonds of Finite Type in Thin Lie Algebras

Borrowing some terminology from pro-p groups, thin Lie algebras are N-graded Lie algebras of width two and obliquity zero, generated in degree one. In particular, their homogeneous components have degree one or two, and they are termed diamonds in the latter case. In one of the two main subclasses of thin Lie algebras the earliest diamond after that in degree one occurs in degree 2q − 1, where ...

متن کامل

Some properties of nilpotent Lie algebras

In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.

متن کامل

Lie Groups and Lie Algebras

A Lie group is, roughly speaking, an analytic manifold with a group structure such that the group operations are analytic. Lie groups arise in a natural way as transformation groups of geometric objects. For example, the group of all affine transformations of a connected manifold with an affine connection and the group of all isometries of a pseudo-Riemannian manifold are known to be Lie groups...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society

سال: 2022

ISSN: ['1464-3839', '0013-0915']

DOI: https://doi.org/10.1017/s0013091521000845